
General Market C3F Driver for MPC56x

User’s Manual

Embedded Memory Center
Technology and Manufacturing
Semiconductor Products Sector

Motorola

2

Change History
Version Date Author Comments

0.1 2000.11.21
JiaZheng Shi

First Draft

0.2 2000.12.01 JiaZheng Shi update
0.3 2000.12.03 JiaZheng Shi update
0.4 2000.12.06 Chuck Kuecker Correct return codes, add comments
0.5 2000.12.07 Rick Miller <www.RickMiller.com>, Update drawings, add comments
1.0 2000.12.08 Rick Miller Clarify PEGOOD results
1.1 2000.12.15 Jiazheng Shi Update the check sum output. Update the return code value
1.2 2000.12.21 Jiazheng Shi Add some tips and troubleshooting
1.3 2000.12.28 Jiazheng Shi Add notes to arguments to clarify the dest, source and

compare result
1.4 2001.01.07 Rick Miller Updated comments, added IRQ cautions.
1.5 2001.01.08 Rick Miller Add FlashInit(). Leave protect registers alone. Added table

colors.
1.6 2001.01.10 Rick Miller Add sub module functions
1.7 2001.01.21 Rick Miller Fixed error list, etc.
1.8 2001.01.28 Rick Miller Dest parameter is now masked to be relative. User can

provide relative or absolute flash address: works either way.
1.9 2001.02.01 Rick Miller Censor tips, added arrayBase, updated error list.
2.0 2001.02.05 Rick Miller Updated censor error list and added censor explanations.
2.1 2001.02.11 Rick Miller Update FlashCheckShadow() and erase error codes.
2.2 2001.02.12 Rick Miller Update erase error codes for protect status.
2.3 2001.02.14 Rick Miller Update arrayBase use, and ARRAY_RANGE errors.
2.4 2001.02.14 Rick Miller Fix FlashErase() bit map for enabledSBlocks[], no block

disable .
2.5 2001.02.15 Max Willis Reformat and update User Manual Content
2.6 2001.02.15 Pamela Wolfe Reformat and update User Manual Content
2.7 2001.02.15 Max Willis Final Changes for 2-15-01 Release
3.0 2001.10.08 Jiazheng Shi Update with new features, suspend/resume, interrupt supports

Make it support MPC56x derivatives with C3F
List affected registers by this driver
Change enabledBDM definition

3.1 2001.11.15 Jiazheng Shi Clarification the combinations of enabledSBlock[] and
enabledBlock[] of FlashErase
 Change deviceMode definition

3.2 2001.12.06 Jiazheng Shi Modify enabledBDM range description
Modify FlashCheckShadow tip for the input parameter, dest
Give description for C3F_ERROR_SRC_DEST_VERIFY

3.3 2001.12.21 Pamela Wolfe &
Max Willis

Final changes for 2001-12-21 release

3.4 2002.01.03 Pamela Wolfe Additional minor changes, primarily to API procedures.

3

Table of Contents

CHAPTER 1: INTRODUCTION.. 6

1.1 OVERVIEW.. 6
1.2 DEVELOPMENT AND TEST PROCEDURES... 8
1.3 DOCUMENTATION REFERENCE ... 9
1.4 SYSTEM REQUIREMENTS... 9
1.5 INSTALLATION .. 9

CHAPTER 2: OPERATION ... 10

2.1 SYSTEM AND FLASH MODULE INITIALIZATION... 10
2.2 C-ARRAY DRIVER FORMAT FOR EMBEDDED APPLICATIONS .. 10
2.3 S-RECORD DRIVER FORMAT FOR BDM PROGRAMMING TOOLS... 10

2.3.1 Relocating S-Records with SAR.EXE ... 11
2.3.2 Building a Custom S-Record .. 11

2.4 OBJECT LIBRARY DRIVER FORMAT FOR CODE COMPRESSION.. 12
2.5 CONCURRENCY, CALLBACK FUNCTIONS, AND FLASH SUSPEND/RESUME .. 12

2.5.1 Callback Template A: No Concurrency, No Read From Flash.. 13
2.5.2 Callback Template B: Polled Concurrency, No Read From Flash .. 13
2.5.3 Callback Template C: Polled Concurrency, Read From Flash.. 13
2.5.4 Callback Template D: Interrupted Concurrency, Read From Flash.. 14

CHAPTER 3: API SPECIFICATION .. 16

3.1 GENERAL OVERVIEW.. 16
3.2 FUNCTION RETURN VALUE ERROR CODES ... 16
3.3 FLASHINIT .. 18

3.3.1 Description... 18
3.3.2 Procedure... 18
3.3.3 Definition.. 19
3.3.4 Arguments .. 19
3.3.5 Return Values ... 20
3.3.6 Tips... 20
3.3.7 Troubleshooting ... 21
3.3.8 Affected Register .. 22
3.3.9 Revision String ... 22

3.4 FLASHCHECKSHADOW ... 23
3.4.1 Description... 23
3.4.2 Procedure... 23
3.4.3 Definition.. 24
3.4.4 Arguments .. 24
3.4.5 Return Values ... 25
3.4.6 Tips... 25
3.4.7 Troubleshooting ... 25
3.4.8 Affected Register .. 25
3.4.9 Revision String ... 25

3.5 FLASHERASE .. 26
3.5.1 Description... 26
3.5.2 Procedure... 26
3.5.3 Definition.. 27
3.5.4 Arguments .. 28
3.5.5 Return Values ... 29
3.5.6 Tips... 29

4

3.5.7 Troubleshooting ... 30
3.5.8 Affected Register .. 30
3.5.9 Revision String ... 31

3.6 BLANKCHECK... 32
3.6.1 Description... 32
3.6.2 Procedure... 32
3.6.3 Definition.. 33
3.6.4 Arguments .. 33
3.6.5 Return Values ... 34
3.6.6 Tips... 34
3.6.7 Troubleshooting ... 35
3.6.8 Affected Register .. 35
3.6.9 Revision String ... 35

3.7 FLASHPROGRAM... 36
3.7.1 Description... 36
3.7.2 Procedure... 36
3.7.3 Definition.. 38
3.7.4 Arguments .. 38
3.7.5 Return Values ... 39
3.7.6 Tips... 39
3.7.7 Troubleshooting ... 40
3.7.8 Affected Register .. 40
3.7.9 Revision String ... 41

3.8 FLASHVERIFY... 42
3.8.1 Description... 42
3.8.2 Procedure... 42
3.8.3 Definition.. 43
3.8.4 Arguments .. 44
3.8.5 Return Values ... 45
3.8.6 Tips... 45
3.8.7 Troubleshooting ... 45
3.8.8 Affected Register .. 46
3.8.9 Revision String ... 46

3.9 CHANGECENSOR... 47
3.9.1 Description... 47
3.9.2 Procedure... 47
3.9.3 Definition.. 48
3.9.4 Arguments .. 49
3.9.5 Return Values ... 50
3.9.6 Tips... 50
3.9.7 Troubleshooting ... 51
3.9.8 Affected Register .. 51
3.9.9 Revision String ... 52

3.10 CHECKSUM... 53
3.10.1 Description... 53
3.10.2 Procedure... 53
3.10.3 Definition.. 54
3.10.4 Arguments .. 54
3.10.5 Return Values ... 55
3.10.6 Tips... 55
3.10.7 Troubleshooting ... 55
3.10.8 Affected Register .. 56
3.10.9 Revision String ... 56

APPENDIX A: PERFORMANCE DATA.. 57

A.1 CODE SIZE ... 57

5

A.2 STACK SIZE.. 58
A.3 PROGRAM / ERASE TIMES .. 59
A.4 CALLBACK PERIOD .. 60

6

��������	
� ����
�����
�

1.1 Overview
The General Market C3F Driver for MPC565/MPC566 and MPC563/MPC564 provides the
following driver functions:

• FlashInit

• FlashCheckShadow

• FlashErase

• BlankCheck

• FlashProgram

• FlashVerify

• ChangeCensor

• CheckSum

Each position-independent, ROM-able General Market Driver (GMD) function is provided as an
independent binary executable so that the end user is free to choose the function subset that
meets their system requirements. Because of the EABI compliant stack frame interface, each
GMD function is accessed via a standard C function call. Thus no special interface code is
required.

Finally, each GMD function runs on either the MPC565 or the MPC563. This feature reduces
development time for flash programming tools, and it minimizes porting effort for application
code that must run on both of these parts.

The following file formats are provided for the GMD function set:

• C-array: This file format can be automatically linked with the user’s application code.

• S-Record: This file format can be used as the only target resident code in a BDM
programming tool.

• Object Library: This file format is compiled with code compression enabled so the driver
functions can be linked to the user’s application prior to the compression step.

To support concurrency, each GMD function accepts a user-supplied callback function as an
argument. In a polling environment where read while write capability is not required, the driver
functions periodically pass control to the callback function so servicing of communication ports,
watchdog timers, and other activities can proceed concurrently with flash operations.

The user-supplied callback function can also support read while write (RWW). That is if a
concurrent activity requires reading the flash during either program or erase, the callback
function can use the hardware suspend/resume feature to temporarily suspend the high voltage so
reads to the flash return valid data. Callback templates and demos are provided that show how
this can be done for two situations:

7

• A polling environment where data must be read from a flash module that is subject to
high voltage program/erase operations. In this case the hardware suspend/resume
feature is used to suspend high voltage long enough to perform flash reads.

• An interrupted environment where the interrupt vectors are stored in a flash module
subject to high voltage program/erase operations. In this case the hardware
suspend/resume is used to suspend high voltage long enough so that interrupt vectors
can service pending interrupts.

So that the binary GMD components can be identified, an ASCII revision string is appended to
the end of each GMD function so that the CPU platform, flash technology, GMD function name,
and GMD function revision can be identified. The revision string format is as follows.

• CPU core + Flash Tech. + ff + xyz

where:

• CPU core is a three character abbreviation for the CPU platform, ie PPC for a PowerPC
CPU core.

• Flash Tech is a three character abbreviation for the flash technology, ie C3F for CDR3-
1T flash technology

• ff is a two character abbreviation for the GMD function, ie:

• FI = FlashInit

• FS = FlashCheckShadow

• FE = FlashErase

• FP = FlashProgram

• BC = BlankCheck

• FV = FlashVerify

• CC = ChangeCensor

• CS = CheckSum

• xyz is a three digit version number

8

1.2 Development and Test Procedures
Each software component is developed and tested to SEI Level 5 standards at Software Center
Motorola China. The driver functions and data undergo two categories of testing:

• API Testing

• There are numerous test cases for API and functional testing.

Function name
Number of test cases for

MPC565
Number of test cases for

MPC563
FlashInit 10 7

FlashCheckShadow 23 23
FlashErase 20 25

BlankCheck 44 35
FlashProgram 60 52
FlashVerify 95 66
CheckSum 43 33

ChangeCensor 468 236
Total 758 477

• Operating Environment Testing

• There are test cases to show the drivers work properly when integrated
into an embedded application.

• There are test cases to show the drivers work properly when they are:

• the only target-resident code, and

• controlled by BDM commands issued by a host computer

• There are test cases to show the drivers work properly when executed
from internal RAM.

• There are test cases to show the drivers work properly when executed
from internal ROM.

• There are test cases to show the drivers work properly when the flash
array(s) is(are) mapped to different locations.

9

1.3 Documentation Re ference
MPC565 / MPC566 Reference Manual, MPC565RM/D

MPC561 /MPC562 / MPC563 / MPC564 Reference Manual, MPC561_3RM/D

SqueeZard MPC56x Code Compression Tool User’s Manual

1.4 System Requireme nts
The product is distributed as an InstallShield setup.exe for Microsoft Windows.

The uncompressed demos were developed and tested with the Windriver Diab C compiler v4.4a
and SDS Singlestep debugger v7.6.2.

The compressed demos were developed with the Windriver Diab C compiler v4.4a but with the
Lauterbach TRACE32 debugger.

The S-Record demos were developed using SDS Singlestep scripts to control the target resident
GMD functions. These scripts show all required register, stack and memory operations required
to operate the GMD functions as stand-alone target resident code.

1.5 Installation
To install the software on your Microsoft Windows system:

1. Unzip the distribution file into a temporary directory.
2. Execute the SETUP.EXE file to launch the Installshield installation process.
3. Follow the on-screen instructions to install the driver and demo files. No reboot is necessary.

10

���������
� �������
�

2.1 System and Flash Module Initialization
While the GMD functions may read both flash and non-flash control registers, they only write to
C3F control registers, the C3F main array, and C3F shadow array locations. Initialization of
system clock speed, the IMMR register, and other MPC565 system functions is the responsibility
of the user. The user is also responsible for initializing the following C3F registers for each
module prior to calling the GMD functions:

• PROTECT[0:7] UC3FMCR[24:31]

• SBEN[0:1] UC3FMCRE[0:1]

• SBPROTECT[0:1] UC3FMCRE[6:7]

The GMD functions are responsible for managing the following C3F registers:

• BLOCK[0:7] UC3FCTL[16:23]

• SBBLOCK[0:1] UC3FCTL[14:15]

2.2 C-Array Driver Fo rmat for Embedded Applications
The c-array GMD function format is intended to simplify automated builds of uncompressed
embedded applications such as boot loaders. As illustrated in the c-array demo provided with this
release, the hexadecimal coded c-array file can be automatically integrated with your application
at link time. The EABI compliant stack frame interface is designed so the GMD functions can be
accessed by a simple C-language function call. The GMD functions can also be called from
assembly language applications so long as the EABI stack frame interface is properly duplicated.
Please refer to the S-Record demo for the exact sequence of operations. Also note that the
EnabledBDM flag must be set to FALSE so that the GMD functions will properly return to the
calling application.

2.3 S-Record Driver F ormat for BDM Programming Tools
The S-Record GMD function format is intended to simplify construction of BDM programming
tools. Since the supplied GMD functions provide all the functionality that is required for a
typical BDM programming tool, no other target resident code is required. In this class of
applications, the BDM port is used to:

• download GMD functions to the target microprocessor,

• download data buffers to the target,

• set up the stack,

• set the program counter,

• and enter run mode.

11

By setting the EnabledBDM flag to TRUE, each target resident GMD function signals
completion to the host computer by switching to BDM mode rather than executing a subroutine
return. At this point error return codes and function return parameters can be retrieved from the
target via the BDM port.

Individual S-Record format files are provided for each GMD function. In addition a single S-
Record is provided that contains all GMD functions. The user can generate single S-Record files
containing custom GMD function subsets by using the following procedure.

2.3.1 Relocating S-Records with SAR.EXE
Since each GMD function is position-independent code, they can be located at any valid memory
location. However since S-Record files are mapped to explicit address ranges, the 0x0 based S-
Records provided for each GMD function must be explicitly mapped to a particular address
range. The SAR.EXE utility is provided for this purpose. The command syntax for SAR.EXE is
illustrated below:

2.3.2 Building a Custom S-Record
The following DOS batch file illustrates how to use SAR.EXE and the copy command to build
an S-record with all eight GMD functions:

SAR ..\gmd_driver\FlashInit.s19 fi.s19 0x3F9800
SAR ..\gmd_driver\FlashCheckShadow.s19 fs.s19 0x3F9A00
SAR ..\gmd_driver\FlashErase.s19 fe.s19 0x3F9C00
SAR ..\gmd_driver\BlankCheck.s19 bc.s19 0x3FA000
SAR ..\gmd_driver\FlashProgram.s19 fp.s19 0x3FA200
SAR ..\gmd_driver\FlashVerify.s19 fv.s19 0x3FA600
SAR ..\gmd_driver\ChangeCensor.s19 cc.s19 0x3FA800
SAR ..\gmd_driver\CheckSum.s19 cs.s19 0x3FAE00

12

copy fi.s19+fs.s19+fe.s19+bc.s19+fp.s19+fv.s19+cc.s19+cs.s19 ..\gmd_driver\gmd.s19
del *.s19

Both the batch file (build.bat) and the S-Record built with it are included with the file
distribution for your convenience.

2.4 Object Library Dr iver Format for Code Compression
The object library GMD function format is intended to simplify automated builds of compressed
embedded applications such as boot loaders. As illustrated in the object library demo provided
with this release, the object library can be automatically integrated with your application at link
time. The EABI compliant stack frame interface is designed so the GMD functions can be
accessed by a simple C-language function call. The GMD functions can also be called from
assembly language applications so long as the EABI stack frame interface is properly duplicated.
Please refer to the S-Record demo for the exact sequence of operations. Also note that the
EnabledBDM flag must be set to FALSE so that the GMD functions will properly return to the
calling application.

Note that the binary or c-array GMD file formats are not appropriate for a code compressed
environment since the SQUEEZARD.EXE file compression application treats these file formats
as data. Since SQUEEZARD.EXE compresses code but not data, maximum compression
efficiency cannot be achieved with the other GMD function formats. However the object file
format is precompiled with code compression enabled. This means it can be linked to your
software application and then compressed for maximum compression efficiency.

2.5 Concurrency, Call back Functions, and Flash Suspend/Resume
Various degrees of concurrency can be achieved by using the callback mechanism that is
designed into the GMD functions. To keep a GMD function from monopolizing the CPU for
extended periods a user-supplied callback function is called from hard-coded locations within the
GMD functions. While the actual time between successive callbacks varies, the design
requirement for the maximum callback period is 100 µs for a 40 MHz system clock. Actual
maximum callback periods for each function are listed in Appendix A.

By customizing the contents of the callback function, a variety of concurrency mechanisms can
be accommodated.

Concurrency
Environment

Concurrent Read
From Flash?

Suspend/Resume of
Program/Erase

Required?
Callback Template

None No No A
Polling No No B
Polling Yes Yes C

Interrupt Yes Yes D

13

2.5.1 Callback Template A: No Concurrency, No Read From Flash
This is the simplest callback template in that it contains no user-supplied logic, and it contains no
suspend/resume logic.

void CallBack (void)
{
}

2.5.2 Callback Template B: Polled Concurrency, No Read From Flash
This callback template contains user-supplied logic, but it contains no suspend/resume logic
since reads from flash are not required. Note that more user-supplied logic means more total
execution time for the GMD functions. Generally speaking, the user-supplied callback logic
should be built like an interrupt service routine in that the user-supplied logic should be as short
as possible.

void CallBack (void)
{
 /**************************/
 /* user supplied logic */
 /**************************/
}

2.5.3 Callback Template C: Polled Concurrency, Read From Flash
When no high voltage flash operations are in progress, this case works like Callback Template B.
However if a program or an erase operation is in progress, this template suspends the flash
operation before taking the user-specified action that requires a read from flash. The flash
operation is resumed before the callback returns to the GMD function.

Note that censor operations cannot be suspended, so in this case the template simply returns to
the GMD function after taking no user-specified action.

Also note that suspend/resume requests should be ‘infrequent’. If suspend/resume requests are
not periodic, they should be limited to just a few for each erase operation. If suspend/resume
requests are periodic, they should be limited to no more than one every millisecond.

14

void CallBack (void)
{
 if EHV bit in C3F control register is 0, High voltage operation is not in progress.
 {
 // Suspend operation is not required to access C3F flash module.
 /****************************/
 /* Read C3F flash module */
 /****************************/
 }
 else EHV bit in C3F control register is 1. High voltage flash operation is in progress.
 {
 if CSC bit in C3F control register is 0, Erase or Program operation is in progress.
 {
 // if PE bit in C3F control register is 1, Erase operation is in progress.
 // if PE bit in C3F control register is 0, Program operation is in progress.

 // Suspend operation is required to access C3F flash module.
 if time since last suspend/resume > 1ms // Allow at least 1ms between suspend/resume operations.
 {
 write 1 to HSUS bit in C3F control register; // Suspend the program or erase operation.
 while HVS bit in C3F control register is 1; // Wait for the suspend operation to complete.
 /****************************/
 /* Read C3F flash module */
 /****************************/
 write 0 to HSUS bit in C3F control register; // Resume the flash program or erase operation.
 }
 }
 else if CSC bit in C3F control register is 1, Censor operation is in progress.
 {
 // Suspend operation is not allowed.
 }
 }
}

2.5.4 Callback Template D: Interrupted Concurrency, Read From Flash
For the MPC56x series of embedded flash parts, an interrupted environment normally implies
that reads from flash are required. This is because the interrupt vectors are typically located in
low addresses of flash module A. If a module A flash operation is in progress, a flash suspend
request is required to make the interrupt vectors visible to the CPU, and hence to make interrupt
processing possible.

This case differs from the previous cases in that the user-supplied logic is now located in
interrupt service routines (ISRs). The callback function permits access to the ISRs by simply
enabling interrupts. If a program or erase is in progress and an interrupt is pending, the flash
operation is suspended before enabling interrupts. If a censor operation is in progress, or if no
interrupts are pending, the callback simply returns to the calling GMD function without
performing either a suspend request and without enabling interrupts.

15

Again note that suspend/resume requests should be ‘infrequent’. If suspend/resume requests are
not periodic, they should be limited to just a few for each erase operation. If suspend/resume
requests are periodic, they should be limited to no more than one every millisecond.

void CallBack (void)
{
 if interrupt is pending
 {
 if EHV bit in C3F control register is 1, High voltage operation is in progress.
 {
 if CSC bit in C3F register is 0, Erase or Program operation is in progress.
 {
 // if PE bit in C3F control register is 1, Erase operation is in progress.
 // if PE bit in C3F control register is 0, Program operation is in progress.

 // Suspend operation is required to access C3F flash module.
 if time since last suspend/resume > 1ms // Allow at least 1ms between suspend/resume operations.
 {
 write 1 to HSUS bit in C3F control register; // Suspend the program or erase operation.
 while HVS bit in C3F control register is 1; // Wait for the suspend operation to complete.
 /****************************/
 /* Enable external interrupts */
 /* Disable external interrupts */
 /****************************/
 write 0 to HSUS bit in C3F control register; // Resume the flash program or erase operation.
 }
 }
 else if EHV bit in C3F control register is 0, Censor operation is in progress.
 {
 // Suspend operation is not allowed.
 }
 }
 else if EHV bit in C3F control register is 0, High voltage operation is not in progress.
 {
 // Suspend operation is not required to access C3F flash module.
 /****************************/
 /* Enable external interrupts */
 /* Disable external interrupts */
 /****************************/
 }
 }
}

16

���������
� ���������������
�

3.1 General Overview
This section defines function return codes and function parameters. The function definitions
include a listing of registers affected by that function as well as a high-level pseudo-code listing
the operations performed by that function.

3.2 Function Return V alue Error Codes
Name Value Description

C3F_OK 0x00000000 The requested operation was successful.
C3F_INFO_LOCK_B 0x00000001 The LOCK bit in C3FMCR register is set. The control

registers of C3F module B cannot be changed.

C3F_INFO_LOCK_A 0x00000002 The LOCK bit in C3FMCR register is set. The control
registers of C3F module A cannot be changed.

C3F_INFO_EPEE_B 0x00000004 High voltage is not present for the C3F module B.
Program and erase operations are not possible.

C3F_INFO_EPEE_A 0x00000008 High voltage is not present for the C3F module A.
Program and erase operations are not possible.

C3F_INFO_BOEPEE_B 0x00000010 High voltage is not present for either small block 0 or the
lowest numbered block of C3F module B. Program and
erase operations are not possible for these blocks.

C3F_INFO_BOEPEE_A 0x00000020 High voltage is not present for either small block 0 or the
lowest numbered block of C3F module A. Program and
erase operations are not possible for these blocks.

C3F_INFO_HVS_B 0x00000040 High voltage operations are now in progress in C3F
module B. Unless suspended, this module (including both
Shadow and main array) can not be accessed.

C3F_INFO_HVS_A 0x00000080 High voltage operations are now in progress in C3F
module A. Unless suspended, this module (including both
Shadow and main array) can not be accessed.

C3F_INFO_CENSOR_B 0x00000100 Module B censor is active.
C3F_INFO_CENSOR_A 0x00000200 Module A censor is active.
C3F_INFO_STOP_B 0x00000400 C3F module B is in low power operation.
C3F_INFO_STOP_A 0x00000800 C3F module A is in low power operation.
C3F_INFO_FLEN 0x00001000 On-chip flash memory is disabled.
C3F_INFO_FLASHID 0x00002000 In early release FLASHID = 0 parts, no censor operation

is possible.
C3F_ERROR_INVALID
_ENABLED_BLOCK

0x00004000 Specified block must be unprotected to erase or program.

RESERVED 0x00008000 Reserved.
RESERVED 0x00010000 Reserved.
C3F_ERROR_PARTID 0x00020000 Current flash driver cannot support the given part.
C3F_ERROR_ALIGNMENT 0x00040000 A parameter does not meet an alignment requirement.
C3F_ERROR_SHADOW_RANGE 0x00080000 An invalid shadow range was passed.
C3F_ERROR_ARRAY_RANGE 0x00100000 An invalid array range was passed.
C3F_ERROR_ENABLED_SMALL
_BLOCK

0x00200000 The enabled small block passed from the caller program
is invalid according to the settings of C3F registers or the
small blocks setting in SBLK[0:1] is inconsistent with the
specified value.

17

C3F_ERROR_ERASE_PEGOOD 0x00400000 Erase operation failed.
C3F_ERROR_PROGRAM
_VERIFICATION

0x00800000 Verification failed after the operation has passed
PEGOOD checking.

C3F_ERROR_PROGRAM
_PEGOOD

0x01000000 Program operation failed because this operation cannot
pass PEGOOD check.

C3F_ERROR_NOT_BLANK 0x02000000 The specified memory location is not blank.
C3F_ERROR_SRC_DEST_VERIFY 0x04000000 The specified flash data does not match the source data.
C3F_ERROR_CENSOR_MODULE 0x08000000 An invalid module number was passed. The module

number depends on the given part.
C3F_ERROR_CENSOR_VALUE 0x10000000 An invalid censor value (>3) was passed.
C3F_ERROR_CENSOR_DEVICE
_MODE

0x20000000 An invalid device censor mode (>3) was passed when
changing censor.

C3F_ERROR_CENSOR_INVALID
_REQUEST

0x40000000 The request to change censor violates the hardware
specifications.

C3F_ERROR_CENSOR_PEGOOD 0x80000000 Censor operation failed.

18

3.3 FlashInit

3.3.1 Description

This function initializes the control registers for the C3F modules. For each module, the
function checks the condition of the control registers, EPEE pin and Block 0 EPEE pin
status, censor status and other environment configurations. The result will be returned to
the user. If everything is OK, it simply returns C3F_OK. Otherwise subsequent functions
will not work. This function need only be called once prior to multiple flash driver
operations.

The input argument &arrayBase is simply 4 bytes of RAM that will become a pointer to
the array at exit. This is used by other functions to point to the absolute start of the array.
It is only necessary to call this function again if the flash memory is re-mapped to another
absolute address.

3.3.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 11.

3. Check the FLEN bit in the IMMR register to verify that the on-chip flash is enabled.
If not, set the return value to C3F_INFO_FLEN and go to step 11.

4. Calculate the array base of the on-chip flash from the ISB bits in the IMMR register
and store in &arrayBase.

5. Determine the number of on-chip C3F modules from the part number.

6. Check the STOP bit in the C3FMCR register to verify that the C3F flash array is
enabled. If not, set the return value to C3F_INFO_STOP_A(B) and go to step 11.

7. Check the LOCK bit in the C3FMCR register to verify that the write-locked register
bits are unlocked. If not, set the return value to C3F_INFO_LOCK_A(B) and go to
step 11.

8. Verify that high voltage operations on the C3F flash module are possible. If not, set
the return value to C3F_INFO_EPEE_A(B), C3F_INFO_BOEPEE_A(B), or
C3F_INFO_HVS_A(B) accordingly and go to step 11.

9. Check the CENSOR bits in the C3FMCR register to verify that C3F array accesses
are allowed. If not, set the return value to C3F_INFO_CENSOR_A(B) and go to step
11.

19

10. If another C3F module exists, go to step 6.

11. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise, return to the calling program
with external interrupts disabled.

3.3.3 Definition

UINT32 FlashInit (UINT8 enabledBDM,

 UINT32 &arrayBase);

3.3.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option If enabledBDM = XXXX-XXX1b, enter BDM

mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts disabled.
Refer to below bitmap.

&arrayBase UINT32 Raw RAM address to store a
pointer to flash memory start.

Any RAM allocated to hold a pointer. It becomes
a pointer to flash at return.

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

20

3.3.5 Return Values
Type Description Values

UINT32 Indicates either success or failure type. The function
checks each embedded C3F module. Each bit in the
returned value indicates a kind of status of the
current operation environment except for C3F_OK.

C3F_OK
C3F_INFO_LOCK_A
C3F_INFO_LOCK_B
C3F_INFO_EPEE_A
C3F_INFO_EPEE_B
C3F_INFO_BOEPEE_A
C3F_INFO_BOEPEE_B
C3F_INFO_HVS_A
C3F_INFO_HVS_B
C3F_INFO_CENSOR_A
C3F_INFO_CENSOR_B
C3F_INFO_STOP_A
C3F_INFO_STOP_B
C3F_INFO_FLEN
C3F_ERROR_PARTID

3.3.6 Tips

At return, the function will disable EHV for each C3F module.

When returning C3F_ERROR_PARTID, all the other checking will not be performed
because the given part is not supported by the current flash driver.

When returning C3F_INFO_FLEN, all but its previous checkpoint
C3F_ERROR_PARTID checking will not be performed because a wrong array base may
cause exceptions.

Under slave/master environment, the input argument, &arrayBase will point to the
internal array base of the master microcontroller.

21

3.3.7 Troubleshooting
Returned Error Bits Description Solution
C3F_INFO _FLEN Flash memory in the part is disabled because of the invalid

IMMR setting. No flash driver function can run properly.
Set the IMMR register
according to the intended
arrayBase.

C3F_INFO
_CENSOR_MODULE_B

Module B is in cleared censor or information censor, i.e.
module B censor bit is 0 or 3. Any operation that accesses
the main array and shadow row of module B will cause an
exception.

Change censor bits of module
B to the no censor state with
ChangeCensor().

C3F_INFO
_CENSOR_MODULE_A

Module A is in cleared censor or information censor, i.e.
module A censor bit is 0 or 3. Any operation that accesses
the main array and shadow row of module A will cause an
exception.

Change censor bits of module
A to the no censor state with
ChangeCensor().

C3F_INFO _EPEE_B High voltage is not present for module B. Flash program
and erase operations are not possible except for array block
0 or the lowest numbered block. Refer to
C3F_INFO_B0EPEE_B

Check target board manual to
enable EPEE.

C3F_INFO _EPEE_A High voltage is not present for the C3F module A. Program
and erase operations are not possible except for array block
0 or the lowest numbered block. Refer to
C3F_INFO_B0EPEE_A

Check target board manual to
enable EPEE.

C3F_INFO _B0EPEE_B High voltage is not present for module B. Program and
erase operations are not possible for block 0 or the lowest
numbered block.

Check target board manual to
enable B0EPEE.

C3F_INFO _B0EPEE_A
High voltage is not present for module A. Program and
erase operations are not possible for block 0 or the lowest
numbered block.

Check target board manual to
enable B0EPEE.

C3F_INFO _HVS_B High voltage operations are now in progress in module B.
Unless suspended, shadow and main array can not be
accessed.

Check if other operations are
pending.

C3F_INFO _HVS_A High voltage operations are now in progress in module A.
Unless suspended, shadow and main array can not be
accessed.

Check if other operations are
pending.

C3F_INFO _LOCK_B
The LOCK bit in C3FMCR register is set. The control
registers of C3F module B cannot be changed. All flash
driver functions cannot run properly.

Disable the lock by a reset, but
from background debug mode
with CSC=0, this bit can be
written from 0 to 1.

C3F_INFO _LOCK_A The LOCK bit in C3FMCR register is set. The control
registers of C3F module A cannot be changed. All flash
driver functions cannot run properly.

Disable the lock by a reset, but
from background debug mode
with CSC=0, this bit can be
written from 0 to 1.

C3F_INFO _STOP_B Module B is in low power operation. Flash memory is not
available, and driver functions cannot run properly. Can
still read and write C3FMCR.

Check STOP bit in C3FMCR
and the input pin, c3f_stopin.

C3F_INFO _STOP_A Module A is in low power operation. Flash memory is not
available, and driver functions cannot run properly. Can
still read and write C3FMCR.

Check STOP bit in C3FMCR
and the input pin, c3f_stopin.

C3F_ERROR_PARTID
Current flash driver cannot support the given part.

Check the part number.

Note: For some parts owning only one C3F module, return value for module B checking will be reserved.

22

3.3.8 Affected Register
Name Bit Description

IMMR
PARTNUM,
FLEN,
ISB

Read

MSR EE Write

C3FMCR
LOCK,
STOP,
CENSOR

Read

EHV Write

C3FCTL
EPEE,
BOEM,
HVS

Read

C3FMCRE FLASHID Read

3.3.9 Revision String

An 11-character ASCII text revision string is appended to the end of the FlashInit
function executable. Use a hex viewer utility to view this revision string in the binary
image. Or use the ASCII option in the debugger memory window dump once the
FlashInit function has been loaded. The FlashInit revision string is formatted as follows:

PPCC3FFIxyz

where:

Item Use Description
PPC

Platform
Power PC CPU

C3F Flash Flash technology acronym
FI Driver Routine FlashInit acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

23

3.4 FlashCheckShadow

3.4.1 Description

This sub module function sets up control registers and range checks shadow row
parameters. The result will be returned to the user. If everything is OK, it simply returns
C3F_OK. This function should be called before FlashProgram, BlankCheck, FlashVerify
or CheckSum operation, even if shadow memory will not be used. This is important to
prevent unintended shadow row operations. If multiple operations are done to the same
memory type, either shadow or main flash memory, this function need only be called
once. It is used to select between main or shadow flash memory.

3.4.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 9.

3. Determine the number of on-chip C3F modules, the relative C3F array address range,
and the relative C3F shadow address range from the part number.

4. Calculate the relative destination address from the destination input and the relative
C3F array address range.

5. Calculate the absolute address of the C3FMCR register from the arrayBase argument.

6. If the shadow input argument is FALSE, clear the SIE bit in the C3FMCR register of
each on-chip C3F module and go to step 9.

7. Verify that the relative destination range (relative destination address + size) and the
size fall within the relative C3F shadow address range. If not, set the return value to
C3F_ERROR_SHADOW_RANGE and go to step 9.

8. Set the SIE bit in the C3FMCR register of the C3F module in which the shadow
resides.

9. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

24

3.4.3 Definition

UINT32 FlashCheckShadow (UINT8 enabledBDM,

 BOOL Shadow,

 UINT32 dest,

 UINT32 size,

 UINT32 arrayBase);

3.4.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and interrupt
option If enabledBDM = XXXX-XXX1b, enter

BDM mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts
enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

shadow BOOL Shadow row select flag. TRUE = Select Shadow Row.
FALSE = Select Main Array.

dest UINT32 Starting virtual address in flash
or other memory.

Any addressable 32-bit word in main array or
shadow or other memory. It should fall into
C3F shadow.

size UINT32 Size, in bytes, of the flash region
needing FlashShadowCheck.

Must be multiples of a 32-bit word. If size
equals to 0, C3F_OK will be returned. Its
combination with dest should fall into C3F
shadow.

arrayBase UINT32 Points to beginning flash
absolute address

This is arrayBase after FlashInit() returns with
&arrayBase initialized.

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

25

3.4.5 Return Values
Type Description Values

UINT32 Indicates either success or failure type. The function
checks each embedded C3F module.

C3F_OK
C3F_ERROR_SHADOW_RANGE
C3F_ERROR_PARTID

3.4.6 Tips

The dest argument will be modified from the Internal Space Base (ISB) in the Internal
Memory Map Register (IMMR). For 1MB flash or 512KB flash, this input will first be
ANDed with 0xFFFFF or 0x7FFFF respectively, then offset with the base address
calculated from the the ISB to produce the absolute flash address.

3.4.7 Troubleshooting
Returned Error Bits Description Solution

C3F_ERROR
_SHADOW_RANGE

The area specified by dest and size is
out of the valid shadow range.

1) Check if dest is out of shadow range.
2) Check if dest+size is out of shadow range.
Note the size of shadow is 512 bytes.

C3F_ERROR _PARTID
Current flash driver cannot support the
given part.

Check the part number.

3.4.8 Affected Register
Name Bit Description
IMMR PARTNUM, Read
MSR EE Write

C3FMCR SIE Read

3.4.9 Revision String

An 11-character ASCII text revision string is appended to the end of the
FlashCheckShadow function executable. Use a hex viewer utility to view this revision
string in the binary image. Or use the ASCII option in the debugger memory window
dump once the FlashCheckShadow function has been loaded. The FlashCheckShadow
revision string is formatted as follows:

PPCC3FFSxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
FS Driver Routine FlashCheckShadow acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

26

3.5 FlashErase

3.5.1 Description

This function will erase the specified enabled array blocks or array small blocks or array
residual blocks. Parameters are range checked on entry, and an appropriate error code is
returned if an error is found. If a block contains a shadow row, then this row is erased
with its parent block. Shadow row contents are not preserved. The user is responsible for
preserving and restoring shadow row contents during an erase.

The flash module block protect bits are not changed by this driver, even if required to
perform an erase or program. It is up to the user to unprotect blocks in C3FMCR to allow
this function to work. If this driver unprotected blocks, it would negate the very purpose
of the protect bits.

3.5.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 18.

3. Determine the number of on-chip C3F modules from the part number.

4. Check the validity of the input arguments, enabledBlocks and enabledSBlocks. If
either argument is invalid, set the return value to
C3F_ERROR_INVALID_ENABLED_BLOCK or
C3F_ERROR_ENABLED_SMALL_BLOCK and go to step 18.

5. Calculate the absolute address of the C3F control registers from the arrayBase input.

6. Disable interrupt requests.

7. Write BLOCK[0:7] and SBBLOCK[0:1] to select the blocks to be erased.

8. Set PE = 1 and SES = 1 in the C3FCTL register.

9. Execute an erase interlock write with 0xFFFFFFFF to any C3F array location within
each module to be erased.

10. Apply high voltage on the C3F flash by setting EHV = 1 in the C3FCTL register.

11. If another C3F module exists, go to step 5.

27

12. If EHV bit has been set to 1, read the C3FCTL register until HVS = 0. (While HVS is
high, the CallBack function will be invoked repeatedly to respond to time-critical
events.)

13. Read the C3FCTL register to confirm that PEGOOD =1. If PEGOOD = 0, set the
return value to C3F_ERROR_ERASE_PEGOOD and go to step 18.

14. Disable high voltage by writing EHV = 0 in the UC3FCTL register.

15. Write SES = 0 in the C3FCTL register to end the erase sequence.

16. Clear the BLOCK[0:7] and SBBLOCK[0:1].

17. If another C3F module exists, go to step 12.

18. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

3.5.3 Definition

UINT32 FlashErase (UINT8 enabledBDM,

 void (*CallBack)(void),

 UINT8 enabledBlocks[module],

 UINT8 enabledSBlocks[module],

 UINT32 arrayBase);

28

3.5.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option If enabledBDM = XXXX-XXX1b,

enter BDM mode with external
interrupt disabled;

If enabledBDM = XXXX-XX10b,
return to calling program with
external interrupts enabled;

If enabledBDM = XXXX-XX00b,
return to calling program with
external interrupts disabled. Refer to
below bitmap.

CallBack void (*)(void) Address of void call
back function pointer.

Any addressable void function
address.

enabledBlocks[module] UINT8 * Pointer to array of
bits used to select the
array blocks to erase.

The values in this array should be one
of the valid layouts of array blocks
for the given MPC56x derivative
part. If no blocks are selected in a
module, set the related array element
to 0x00

enabledSBlocks[module] UINT8 * Pointer to array of
bits used to select the
small blocks to erase.

The values in this array should be one
of the valid layouts of small block
arrays. If no blocks are selected in a
module, set the related array element
to 0x00

arrayBase UINT32 Points to beginning
flash absolute address

This is arrayBase after FlashInit()
returns with &arrayBase initialized.

Note: EnabledSBlocks[module] will determine which array small blocks need erasing. Only two bits will
be meaningful and the position of these two bits will be determined by the array small block location code
SBLK[0:1].

Bit map for enabledBlocks [module]

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

Bit map for enabledSBlocks[module] Note the unexpected bit order.

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
small

block 0
small

block 1
reserved reserved reserved reserved reserved reserved

The C3F array erase is subject to both enabledBlocks[module] and
enabledSBlocks[module]. The SBEN[0:1] bits in C3FMCRE will be set according to the
enabledSBlocks selected by the user for erase.

29

For example, consider array small block 0 and array block 0 in module A, based on the
above small block layout. The following combinations are illustrated:

enabledSBlock[0] Bit 0 enabledBlock[0] Bit 0 Array locations erased
0 0 None
0 1 Only residual block 0 will be erased
1 0 Only small block 0 will be erased
1 1 All locations in block 0 will be erased

Note: The above table is only valid if SBEN=1, namely small block is enabled. Otherwise, input
argument enabledBlock[] will determine array location to be erased. When the given block bit of
enabledBlock[] is set, all locations within this block will be erase unless this block is protected.

Bit map for the input parameter enabledBDM

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

3.5.5 Return Values
Type Description Possible Values

UINT32 Successful completion or error
value.

C3F_OK
C3F_ERROR_ERASE_PEGOOD
C3F_ERROR_INVALID_ENABLED_BLOCK
C3F_ERROR_ENABLED_SMALL_BLOCK
C3F_ERROR_PARTID

3.5.6 Tips

If the blocks to be erased have subsidiary shadow rows, they will also be erased. The user
needs to save the shadow contents if needed.

The function will handle module A and module B at the same time if the given part owns
two C3F modules. So please always set the enabledBlock and enabledSBlock arrays
correctly, e.g. enabledBlock[0] and enabledSBlock[0] for selecting blocks in module A;
enabledBlock[1], enabledSBlock[1] for module B. If no blocks are selected in a module,
set the related array element to 0x00. More detailed information, refer to above Notes.

Do not erase blocks in a module having cleared censor or information censor.

30

If both the two elements in the enabledBlock[0], enabledSBlock[0] array and the two
elements in the enabledBlock[1], enabledSBlock[1] array are 0x00, the GMD function
will return C3F_OK unless the Flash memory is not available.

The flash driver will not be able to erase or program memory within its own module. The
erase or program function disables normal reads of flash memory. For example, if the
driver is in module A, then any part of module B may be programmed or erased, provided
module B reads are not necessary. If an interrupt or polling routine requires reads from a
module being erased or programmed, then suspend and resume operations are required to
read valid data. Any module containing interrupt vectors should not be erased or
programmed while interrupts are possible. This is because the interrupt pointers in flash
will not read valid data. Since module A contains interrupt vectors, it is suggested to use
module B for all erase and program operations, while keeping the flash driver in module
A. If module A erase and program operations are required, one can copy the driver into
RAM for execution, and disable all interrupts.

3.5.7 Troubleshooting
Returned Error Bits Description Solution

C3F_ERROR
_INVALID_ENABLED_BLOCK

Could not erase This block must be unprotected.

C3F_ERROR
_ENABLED_SMALL_BLOCK

Could not erase This small block must be
unprotected.

C3F_ERROR _ERASE_PEGOOD Erase operation failed
Repeat the erase operation or the C3F
is invalid or high voltage applied to
C3F is unsuitable.

C3F_ERROR _PARTID
Current flash driver
cannot support the
given part.

Check the part number.

3.5.8 Affected Register
Name Bit Description
IMMR PARTNUM Read
MSR EE Write
C3FMCR PROTECT Read

EHV,
PE,
SES,
BLOCK,
SBLOCK

Write
C3FCTL

HVS,
PEGOOD

Read

SBEN Write
C3FMCRE

SBPROTECT Read

31

3.5.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the FlashErase function executable. Use a hex viewer utility or the
ASCII option in the debugger memory window dump once the FlashErase function has
been loaded, to view this revision string in the binary image. The FlashErase revision
string is formatted as follows:

PPCC3FFExyz

 where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
FE Driver Routine FlashErase acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

32

3.6 BlankCheck

3.6.1 Description

This function will perform a blank check on the specified memory array or shadow row.

A check is first performed to verify that the selected array is accessible. If this check
should fail, the appropriate error code will be returned.

If the blank check fails, then *compareAddress is updated with the first failing address,
and *compareData shows the failing data.

3.6.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 10.

3. Determine the number of on-chip C3F modules and the relative C3F array address
range from the partnumber.

4. Clear the compareAddress and compareData arguments.

5. Calculate the relative destination address from the destination input and the relative
C3F array address range.

6. Verify that the relative destination address and the size input are each word (4-byte)
aligned. If not, set the return value to C3F_ERROR_ALIGNMENT and go to step 10.

7. Verify that the relative destination range (relative destination address + size) and the
size fall within the relative C3F array address range. If not, set the return value to
C3F_ERROR_ARRAY_RANGE and go to step 10.

8. Calculate the absolute destination address from the relative destination address and
the arrayBase input.

9. Blank check each word (4 bytes). If there is a word not equal to 0xFFFFFFFF, set the
return value to C3F_ERROR_NOT_BLANK, set the compareAddress argument to
the failing address, set the compareData argument to the corresponding data, and stop
the blank checking operation. (During the blank checking operation, the CallBack
function will be invoked periodically to respond to time-critical events.)

10. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling

33

program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

3.6.3 Definition

UINT32 BlankCheck (UINT8 enabledBDM,

 void (*CallBack)(void),

 UINT32 dest,

 UINT32 size,

 UINT32 *compareAddress,

 UINT32 *compareData,

 UINT32 arrayBase);

3.6.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option If enabledBDM = XXXX-XXX1b, enter BDM

mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts
enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

CallBack void (*)(void) Address of void call back
function pointer.

Any addressable void function address.

dest UINT32 Destination address to be
checked in flash
memory.

You may provide an absolute or relative
address, since this input is masked to the size of
internal flash address space. It should fall into
C3F flash module.

size UINT32 Size, in bytes, of the flash
region to blank check.

Must be multiples of a 32-bit word. If size
equals to 0, C3F_OK will be returned. Its
combination with dest should fall into C3F
flash module.

*compareAddress UINT32 First non-blank address Only valid when the whole function returns
C3F_ERROR_NOT_BLANK.

*compareData UINT32 First non-blank data Only valid when the whole function returns
C3F_ERROR_NOT_BLANK.

arrayBase UINT32 Points to beginning flash
absolute address

This is arrayBase after FlashInit() returns with
&arrayBase initialized.

Notes:

34

The dest argument will be modified according to IMMR (Internal Memory Map Register) register. In the
cases of a 1MB flash or a 512KB flash, this input will first be ANDed with 0xFFFFF or 0x7FFFF
respectively, then offset in memory space according to IMMR to produce the absolute flash address.

The compareAddress will be the relative address. It should be modified according the IMMR setting
before checking this address.

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

3.6.5 Return Values
Type Description Possible Values

UINT32 Successful completion or error value. C3F_OK
C3F_ERROR_NOT_BLANK
C3F_ERROR_ALIGNMENT
C3F_ERROR_ARRAY_RANGE
C3F_ERROR_PARTID

3.6.6 Tips

The function can do the blank check only in flash memory space. Do NOT check blocks
in cleared censor or information censor modules. It may cause machine-check or check-
stop exceptions. If size = 0, the function returns C3F_OK if the other parameters are all
valid.

When executing the driver from flash memory, do NOT check the shadow row in the
module that the function is resident in. Reading the shadow row will temporarily make
the main flash memory unreadable. This may also cause interrupts to be improperly
vectored.

35

3.6.7 Troubleshooting
Returned Error Bits Description Solution
C3F_ERROR
_NOT_BLANK

This is not an error. It just indicates
that there is a non-blank word (i.e. not
0xFFFFFF) within the area to be
checked.

Must erase it first

C3F_ERROR
_ARRAY_RANGE The area specified by dest and size is

out of the valid C3F array range.

1) Check if dest is out of C3F array range.
2) Check if dest+size is out of C3F array range.

Note the size of C3F array is 1M bytes or 512K
bytes depending on the given part.

C3F_ERROR
_ALIGNMENT

This error indicates that either the dest
or the size isn’t valid.

1)Check if the parameter dest is on the word (32-bit
or 4-byte) boundary, i.e. the dest is multiple of 4.
2)Check if the parameter size is multiple of 4.

C3F_ERROR
_PARTID Current flash driver cannot support the

given part.

Check the part number.

3.6.8 Affected Register

Name Bit Description
IMMR PARTNUM Read
MSR EE Write

3.6.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the BlankCheck function executable. Use a hex viewer utility or the
ASCII option in the debugger memory window dump once the BlankCheck function has
been loaded, to view this revision string in the binary image. The BlankCheck revision
string is formatted as follows:

PPCC3FBCxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
BC Driver Routine BlankCheck acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

36

3.7 FlashProgram

3.7.1 Description

This function will program the specified memory areas with the source data provided. A
check is first performed to verify that the selected array is accessible. If this check should
fail, the appropriate error code will be returned.

If it is desired to program less than a full 32 bit word, the user application should fill the
remaining bytes of the given word of source data with 0xFF, so that the original data in
the flash memory will be retained.

Unlike the MPC555 flash, the source data can reside in the same block as the destination
data, because the flash can be read during programming provided the high voltage
applied to the same C3F flash module is suspended. This is also true for the shadow row
and main array combinations. When the shadow row is visible, the main array locations
are not visible. Each C3F module contains only one shadow row.

Multiple modules must be mapped in one contiguous region. The source buffer contains
data that will be loaded into flash memory.

The flash module block protect bits are not changed by this driver, even if required to
perform an erase or program. It is up to the user to unprotect blocks in C3FMCR to allow
this function to work. If this driver unprotected blocks, it would negate the very purpose
of the protect bits.

3.7.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 22.

3. Determine the number of on-chip C3F modules and the relative C3F array address
range from the part number.

4. Calculate the relative destination address from the destination input and the relative
C3F array address range.

5. Verify that the relative destination address, the size input, and the source input are
each word (4-byte) aligned. If not, set the return value to
C3F_ERROR_ALIGNMENT and go to step 22.

37

6. Verify that the relative destination range (relative destination address + size) and the
size fall within the relative C3F array address range. If not, set the return value to
C3F_ERROR_ARRAY_RANGE and go to step 22.

7. Determine the end destination index for each C3F module to be programmed.

8. Calculate the absolute destination address from the arrayBase input.

9. Disable interrupt requests.

10. Calculate the absolute addresse of the C3F control registers from the arrayBase input.

11. Write BLOCK[0:7] = 0xFF and SBBLOCK[0:1] = 0x3 to select the array blocks to
be programmed,

12. Set SES = 1 and PE = 0 in the C3FCTL register.

13. Write data word (4 bytes) from source to destination.

14. Apply high voltage on the C3F flash with writing EHV = 1 in the C3FCTL register.

15. Read the C3FCTL register until HVS = 0. (While HVS is high, the CallBack function
will be invoked repeatedly to respond to time-critical events.)

16. Read the C3FCTL register to confirm PEGOOD =1. If PEGOOD = 0, set the return
value to C3F_ERROR_PROGRAM_PEGOOD and go to step 22.

17. Disable high voltage by writing EHV = 0 in the C3FCTL register.

18. If more data needs to be programmed go to step 13.

19. Write SES = 0 in the C3FCTL register to end program sequence.

20. Clear the BLOCK[0:7] and SBBLOCK[0:1].

21. If another C3F module exists, go to step 10.

22. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

38

3.7.3 Definition

UINT32 FlashProgram (UINT8 enabledBDM,

 void(*CallBack)(void),

 UINT32 dest,

 UINT32 size,

 UINT32 source,

 UINT32 arrayBase);

3.7.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and interrupt
option If enabledBDM = XXXX-XXX1b, enter

BDM mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts
enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

CallBack void (*)(void) Address of void call back
function pointer.

Any addressable void function address.

dest UINT32 Destination address to be
programmed in flash memory.

You may provide an absolute or relative
address, since this input is masked to the size
of internal flash address space. It should fall
into C3F flash module.

size UINT32 Size, in bytes, of the flash
region to be programmed.

Must be multiples of a 32-bit word. If size
equals 0, C3F_OK will be returned. Its
combination with dest should fall into C3F
flash module.

source UINT32 Source program buffer
address.

This address must reside on a 4-byte
boundary.

arrayBase UINT32 Points to beginning flash
absolute address

This is arrayBase after FlashInit() returns with
&arrayBase initialized.

Note:
The dest argument will be modified according to IMMR (Internal Memory Map Register) register. In the
cases of a 1MB flash or a 512KB flash, this input will first be ANDed with 0xFFFFF or 0x7FFFF
respectively, then offset in memory space according to IMMR to produce the absolute flash address.

39

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

3.7.5 Return Values
Type Description Possible Values

UINT32 Successful completion or error value. C3F_OK
C3F_ERROR_PROGRAM_PEGOOD
C3F_ERROR_ALIGNMENT
C3F_ERROR_ARRAY_RANGE
C3F_ERROR_PARTID

Note:
The user is responsible for initializing the block protect. This flash driver does not alter the existing block
protection register. This means one can attempt to program protected flash blocks, and though it will pass
PEGOOD status, the Verification status will show a failure. This will be seen after calling FlashVerify().
While SES=1 the PEGOOD status is not a good indicator of success during a block protected condition.
When SES=0 the flash data can be verified, and errors will be detected only then. See the following table:

Result C3F_ERROR_PROGRAM_PEGOOD C3F_ERROR_ PROGRAM _VERIFICATION
Pass 0 = Pass 0 = Pass
Failure 0 = Pass 1 = Failure due to block protected
Failure 1 = Failure no care since PEGOOD = 1

3.7.6 Tips

When returning the function will clear SIE bits for all modules (in C3FMCR), clear all
the BLOCK bits of C3FCTL, and disable small blocks. The small block is disabled
during program operation. The two C3F modules are supposed to be a consecutive
memory space.

If size = 0, the function returns C3F_OK if the other parameters are all valid.

Do NOT program modules having cleared censor or information censor status. It may
cause machine-check or check-stop exceptions.

The function can NOT run properly if the source data is in a flash module and the
destination data is in the shadow row of the same flash module. However, the source data
and destination can be located both in the array of shadow with the same module.

The flash driver will not be able to erase or program memory within its own module. The
erase or program function disables normal reads of flash memory. For example, if the
driver is in module A, then any part of module B may be programmed or erased, provided
module B reads are not necessary. If an interrupt or polling routine requires reads from a
module being erased or programmed, then suspend and resume operations are required to

40

read valid data. Any module containing interrupt vectors should not be erased or
programmed while interrupts are possible. This is because the interrupt pointers in flash
will not read valid data. Since module A contains interrupt vectors, it is suggested to use
module B for all erase and program operations, while keeping the flash driver in module
A. If module A erase and program operations are required, one can copy the driver into
RAM for execution, and disable all interrupts.

3.7.7 Troubleshooting
Returned Error Bits Description Solution

C3F_ERROR
_ALIGNMENT

This error indicates that either the dest
or the size isn’t valid.

1)Check if the parameter dest is on the word
(32-bit or 4-byte) boundary, i.e. the dest is
multiple of 4.
2)Check if the parameter size is multiple of 4.
3)Check if the parameter source is multiple of 4.

C3F_ERROR
_ARRAY_RANGE The area specified by dest and size is

out of the valid C3F array range.

1) Check if dest is out of C3F array range.
2) Check if dest+size is out of C3F array range.

Note the size of C3F array is 1M bytes or 512K
bytes depending on the given part.

C3F_ERROR
_PROGRAM_PEGOOD

Program operation failed because this
operation cannot pass PEGOOD
check.

Repeat the program operation or the C3F is
invalid or high voltage applied to C3F is
unsuitable.

C3F_ERROR _PARTID
Current flash driver cannot support the
given part.

Check the part number.

3.7.8 Affected Register
Name Bit Description
IMMR PARTNUM Read
MSR EE Write

EHV,
PE,
SES,
BLOCK,
SBLOCK

Write
C3FCTL

HVS,
PEGOOD

Read

41

3.7.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the FlashProgram function executable. Use a hex viewer utility or
the ASCII option in the debugger memory window dump once the FlashProgram function
has been loaded, to view this revision string in the binary image. The FlashProgram
revision string is formatted as follows:

PPCC3FFPxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
FP Driver Routine FlashProgram acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

42

3.8 FlashVerify

3.8.1 Description

This function will verify the contents of the specified flash memory array against a
comparison array.

A check is first performed to verify that the selected array is accessible. If this check
should fail, the appropriate error code will be returned.

When the shadow row is visible, the main array locations are not visible. Each C3F
module contains only one shadow row.

Multiple modules must be mapped in one contiguous region. The source buffer contains
data that will be loaded into flash memory. The final data in the given C3F flash location
is one copy of the source data.

3.8.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 10.

3. Determine the number of on-chip C3F modules and the relative C3F array address
range from the part number.

4. Calculate the relative destination address from the destination input and the relative
C3F array address range.

5. Verify that the relative destination address, the size input, and the source input are
each word (4-byte) aligned. If not, set the return value to
C3F_ERROR_ALIGNMENT and go to step 10.

6. Verify that the relative destination range (relative destination address + size) and the
size fall within the relative C3F array address range. If not, set the return value to
C3F_ERROR_ARRAY_RANGE and go to step 10.

7. Calculate the absolute destination address from the arrayBase input.

8. Clear the compareAddress, compareData, and compareSourceData arguments.

9. Verify that each word (4 bytes) of the destination data equals the source data. If a
destination word is not equal to a source word, set the return value to
C3F_ERROR_SRC_DEST_VERIFY, write the failing destination address to
compareAddress, write the corresponding destination word to compareData, write the

43

corresponding source word to compareSourceData, and stop the verifying operation.
(During the verifying operation, the CallBack function will be invoked periodically to
respond to time-critical events.)

10. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

3.8.3 Definition

UINT32 FlashVerify (UINT8 enabledBDM,

 void (*CallBack)(void),

 UINT32 dest,

 UINT32 size,

 UINT32 source,

 UINT32 *compareAddress,

 UINT32 *compareData,

 UINT32 *compareSourceData,

 UINT32 arrayBase);

44

3.8.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option

If enabledBDM = XXXX-XXX1b, enter
BDM mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts
enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

CallBack void
(*)(void)

Address of void call
back function pointer.

Any addressable void function
address.

shadow BOOL Shadow row select
flag.

TRUE = Select Shadow Row.
FALSE = Select Main Array.

dest UINT32 Destination address to
be verified in flash
memory.

You may provide an absolute or
relative address, since this input is
masked to the size of internal flash
address space. It should fall into C3F
flash module.

size UINT32 Size, in bytes, of the
flash region to flash
verify.

Must be multiples of a 32-bit word. If
size equals to 0, C3F_OK will be
returned. Its combination with dest
should fall into C3F flash module.

source UINT32 Source program buffer
address.

This address must reside on a 4-byte
boundary.

*compareAddress UINT32 First failing address Only valid when the whole function
returns
C3F_ERROR_SRC_DEST_VERIFY.

*compareData UINT32 First failing data Only valid when the whole function
returns
C3F_ERROR_SRC_DEST_VERIFY.

*compareSource
Data

UINT32 First correct data Only valid when the whole function
returns
C3F_ERROR_SRC_DEST_VERIFY.

arrayBase UINT32 Points to beginning
flash absolute address

This is arrayBase after FlashInit()
returns with &arrayBase initialized.

Notes:
The dest argument will be modified according to IMMR (Internal Memory Map Register) register. In the
cases of a 1MB flash or a 512KB flash, this input will first be ANDed with 0xFFFFF or 0x7FFFF
respectively, then offset in memory space according to IMMR to produce the absolute flash address.
The compareAddress will be the relative address. It should be modified according the IMMR setting
before checking this address.

45

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

3.8.5 Return Values
Type Description Possible Values

UINT32 Successful completion or error value. C3F_OK
C3F_ERROR_ALIGNMENT
C3F_ERROR_ARRAY_RANGE
C3F_ERROR_SRC_DEST_VERIFY
C3F_ERROR_PARTID

3.8.6 Tips

The source data must NOT be in the shadow rows. When running in flash memory, do
NOT verify the shadow row of the module that the function is resident in.

The function can NOT run properly if the source data is in a flash module and the
destination data is just in the shadow row of the same flash module.

Do NOT verify the blocks having cleared censor or information censor status. It may
cause machine-check or check-stop exceptions.

If size = 0, the function returns C3F_OK if the other parameters are all valid.

3.8.7 Troubleshooting
Returned Error Bits Description Solution

C3F_ERROR _ARRAY_RANGE The area specified by
dest and size is out of
the valid C3F array
range.

1) Check if dest is out of C3F array range.
2) Check if dest+size is out of C3F array range.

Note the size of C3F array is 1M bytes or 512K
bytes depending on the given part.

C3F_ERROR _ALIGNMENT
This error indicates
that either the dest or
the size isn’t valid.

1)Check if the parameter dest is on the word (32-bit
or 4-byte) boundary, i.e. the dest is multiple of 4.
2)Check if the parameter size is multiple of 4.
3)Check if the parameter source is multiple of 4.

C3F_ERROR_SRC_DEST_VER
IFY

This is not an error. It
just indicates that
destination data in
C3F and source can
not match.

1)Check the correct source and destination
addresses
2)Reprogram data into flash memory

C3F_ERROR _PARTID
Current flash driver
cannot support the
given part.

Check the part number.

46

3.8.8 Affected Register
Name Bit Description
IMMR PARTNUM Read
MSR EE Write

3.8.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the FlashVerify function executable. Use a hex viewer utility or the
ASCII option in the debugger memory window dump once the FlashVerify function has
been loaded, to view this revision string in the binary image. The FlashVerify revision
string is formatted as follows:

PPCC3FFVxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
FV Driver Routine FlashVerify acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

47

3.9 ChangeCensor

3.9.1 Description

This function will change the state of the specified module’s censor bit.

A check is performed to determine if the selected module is accessible. If this check
should fail, the appropriate error code will be returned.

This function can only change the censor bit of one module at a time.

3.9.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 21.

3. Determine the number of on-chip C3F modules from the part number.

4. Check input argument, censor value to ensue its value is valid. If the value is invalid
set return value to C3F_ERROR_CENSOR_VALUE and go to 21.

5. Check input argument, device mode to ensue its value is valid. If the value is invalid
set return value to C3F_ERROR_CENSOR_DEVICE_MODE and go to step 21.

6. Check input argument, module number to ensue its value is valid. If the value is
invalid set return value to C3F_ERROR_CENSOR_MODULE and go to step 21.

7. Calculate the absolute address of the C3F control registers from the arrayBase input.

8. Check FLASHID to ensure the given part owns censor feature. If censor feature is
unavailable, set return value with C3F_INFO_FLASHID and go to step 21

9. If the desired censor value equals the current censor value of CENSOR[0:1], set
return value with C3F_OK and go to step 21

10. Confirm that the censor state transition is valid. If not, set the return value to
C3F_ERROR_CENSOR_INVALID_REQUEST and go to step 21.

11. Disable interrupt requests.

12. Save block protect bits, small block protects bits and small block enable bits for
restoration.

48

13. If clear censor, unprotect entire module, disable small blocks, enable all module
blocks and set PE=1. Otherwise, clear PE=0.

14. Set CSC = 1 and SES = 1 in the C3FCTL register.

15. If clear censor, do an erase interlock write and if IWS = 0 this write is to array and if
IWS=1 this write is to CENSOR bit(s) directly. Otherwise, write a 1 to the CENSOR
bit(s) to be set

16. Read the C3FCTL register until HVS = 0. (While HVS is high, the CallBack function
will be invoked repeatedly to respond to time-critical events.)

17. Read the C3FCTL register to confirm PEGOOD =1. If PEGOOD = 0, set the return
value to C3F_ERROR_CENSOR_PEGOOD and go to step 21.

18. Write EHV = 0 in the C3FCTL register.

19. Write SES = 0 and CSC = 0 in the C3FCTL register.

20. Deselect blocks and restore block protect bits, small block protects bits and small
block enable bits.

21. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

3.9.3 Definition

UINT32 ChangeCensor (UINT8 enabledBDM,

 void(*CallBack)(void),

 UINT8 module,

 UINT8 censorValue ,

 UINT8 deviceMode,

 UINT32 arrayBase);

49

3.9.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option If enabledBDM = XXXX-XXX1b, enter BDM

mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

CallBack void (*)(void) Address of void call
back function pointer.

Any addressable void function address.

module UINT8 Module selected for a
censor bit change.

0 = module A
1 = module B

censorValue UINT8 New Censor value to be
programmed.

0 = cleared censor
1 = no censor
2 = no censor
3 = information censor

deviceMode UINT8 Specify the device
censor mode when this
function is executed and
also determine interlock
write select.

0 = censored device mode and IWS = 0
1 = uncensored device mode and IWS = 0
2 = censored device mode and IWS = 1
3 = uncensored device mode and IWS= 1
Other value is invalid.

arrayBase UINT32 Points to beginning flash
absolute address

This is arrayBase after FlashInit() returns with
&arrayBase initialized.

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

Bit map for the input parameter deviceMode

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved IWS flag Mode flag

Notes:
1) It is imperative that the user supply the correct value for this input parameter, otherwise, the results

will be unpredictable.
2) The Mode flag should be cleared for uncensored mode (boot from flash only) and set for censored

mode (BDM, boot from external ROM, slave).
3) The IWS flag should match the IWS bit (bit 15) in the first shadow row of the module selected for the

censor change.

50

3.9.5 Return Values
Type Description Values

UINT32 Successful completion or error
value.

C3F_OK
C3F_ERROR_CENSOR_MODULE
C3F_ERROR_CENSOR_VALUE
C3F_ERROR_CENSOR_DEVICE_MODE
C3F_ERROR_CENSOR_INVALID_REQUEST
C3F_ERROR_CENSOR_PEGOOD
C3F_INFO_FLASHID
C3F_ERROR_PARTID

3.9.6 Tips

This function depends on correct values in bit 7 and bit 6 of the deviceMode input
argument to determine the censor state transition and interlock write. Therefore, it is the
user’s responsibility to provide the correct settings. The mode (bit 7) refers to the way
memory is executed at reset. If execution begins from flash, then the mode is uncensored.
If execution begins from external memory, BDM, or as a slave processor, then the mode
is censored. The IWS (bit 6) refers to the Interlock Write Select setting, bit 15 in the first
shadow word of the relevant module.

When returning, for both modules the function will clear all the BLOCK bits of C3FCTL.
The protect bits will be preserved. A device reset may be necessary to allow a 11 to 00
transition.

To clear censor bits, all the contents in the relevant module will be erased, including the
main array and the shadow row.

This function only makes one pass, either erasing BOTH bits to zero, or programming
one or two bits to a one. The table below shows the allowed censor transitions:

Allowed ChangeCensor() Transitions:

Current
censor
value

Want
CensorValue =

00

Want
CensorValue =

01

Want
CensorValue =

10

Want
CensorValue =

11
00 Same Allowed Allowed Allowed
01 Allowed Same NO Allowed
10 Allowed NO Same Allowed
11 Allowed NO NO Same

If the transition is to the same state, ChangeCensor() does nothing, but does returns
C3F_OK. If the desired state is not allowed, then first go to state 00, then choose the
desired state.

51

When running in flash memory, do NOT change the censor bits of the module that the
function is resident in.

3.9.7 Troubleshooting
Returned Error Bits Description Solution

C3F_INFO_FLASHID Module FLASHID = 0 In early release FLASHID = 0 parts, no censor operation
is possible. Get a new part.

C3F_ERROR _CENSOR
_MODULE

The specified flash Module does
not exist

Choose a valid module number from the above
Argument list.

C3F_ERROR _ CENSOR
_VALUE

The specified censorValue is over
3, and does not exist

Choose a valid censorValue from the above Argument
list.

C3F_ERROR _ CENSOR
_DEVICE_MODE

The specified deviceMode is over
3, and does not exist

Choose a valid deviceMode from the above Argument
list.

C3F_ERROR _ CENSOR
_INVALID_REQUEST

User requested an invalid censor
transition, or device is in censored
deviceMode and cannot do it.

May boot from flash to be in deviceMode 1. ACCESS
and FIC in C3FMCR also affect allowed transitions. For
more detailed, may refer to the latest C3F specification
about Censorship and Non-Censorship Accesses table.

C3F_ERROR _ CENSOR
_PEGOOD

Censor transition failed. DeviceMode may be incorrect, or ACCESS and FIC
may interfere. A reset may be required before the part
can change states.

C3F_ERROR _PARTID Current flash driver cannot
support the given part.

Check the part number.

3.9.8 Affected Register
Name Bit Description
IMMR PARTNUM Read
MSR EE Write

PROTECT Read, Write
ACCESS,
FIC

ReadC3FMCR

CENSOR Read, Write
SBEN,
SBPROTECT

Read, Write
C3FMCRE

FLASHID Read
EHV,
PE,
SES,
CSC
BLOCK,
SBLOCK

Write
C3FCTL

HVS,
PEGOOD

Read

52

3.9.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the ChangeCensor function executable. Use a hex viewer utility, or
use the ASCII option in the debugger memory window dump once the ChangeCensor
function has been loaded, to view this revision string in the binary image. The
ChangeCensor revision string is formatted as follows:

PPCC3FCCxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
CC Driver Routine ChangeCensor acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

53

3.10 CheckSum

3.10.1 Description

This function will simply calculate the checksum for the selected block of flash memory
by summing 32-bit words. If an overflow occurs, during checksum, the carry bit will be
ignored. A check is performed to determine whether the selected memory array is
accessible. If it is not, an appropriate error code is returned. The finally calculated
checksum is stored in a 32-bit word variable pointed to by “sum”.

3.10.2 Procedure

1. Set the return value to C3F_OK.

2. Get the part number from the PARTNUM bits in the IMMR register to verify that the
on-chip flash is supported. If not, set the return value to C3F_INFO_PARTID and go
to step 9.

3. Determine the number of on-chip C3F modules and the relative C3F array address
range from the part number.

4. Calculate the relative destination address from the destination input and the relative
C3F array address range

5. Verify that the relative destination address and the size input are each word (4-byte)
aligned. If not, set the return value to C3F_ERROR_ALIGNMENT and go to step 9.

6. Verify that the relative destination range (relative destination address + size) and the
size fall within the relative C3F array address range. If not, set the return value to
C3F_ERROR_ARRAY_RANGE and go to step 9.

7. Calculate the absolute destination address from the relative destination address and
the arrayBase input.

8. Accumulate the sum of each word (4 bytes) into the sum argument. (During the
summing operation, the CallBack function will be invoked periodically to respond to
time-critical events.)

9. If the BDM flag bit in the enabledBDM input argument is set, enter BDM mode by
executing the “sc” instruction with external interrupts disabled. Otherwise, if the
Interrupt flag bit in the enabledBDM input argument is set, return to the calling
program with external interrupts enabled. Otherwise return to the calling program
with external interrupts disabled.

54

3.10.3 Definition

UINT32 CheckSum (UINT8 enbaledBDM,

 void (*CallBack)(void)

 UINT32 dest,

 UINT32 size,

 UINT32 *sum,

 UINT32 arrayBase);

3.10.4 Arguments
Argument Type Description Range

enabledBDM UINT8 BDM select flag and
interrupt option If enabledBDM = XXXX-XXX1b, enter BDM

mode with external interrupt disabled;

If enabledBDM = XXXX-XX10b, return to
calling program with external interrupts
enabled;

If enabledBDM = XXXX-XX00b, return to
calling program with external interrupts
disabled. Refer to below bitmap.

CallBack void (*)(void) Address of void call back
function pointer.

Any addressable void function address.

dest UINT32 Destination address to be
summed in flash memory.

You may provide an absolute or relative
address, since this input is masked to the size of
internal flash address space. It should fall into
C3F flash module.

size UINT32 Size, in bytes, of the flash
region to check sum.

Must be multiples of a 32-bit word. If size
equals to 0, C3F_OK will be returned.

sum UINT32 * Returned sum value will
be stored here.

0x0000000000 - 0xFFFFFFFF. Note that this
value is only valid when the function returns
C3F_OK. Its combination with dest should fall
into C3F flash module.

arrayBase UINT32 Points to beginning flash
absolute address

This is arrayBase after FlashInit() returns with
&arrayBase initialized.

Notes:
The dest argument is the relative address. It will be modified according to IMMR (Internal Memory Map
Register) register. In the cases of a 1MB flash or a 512KB flash, this input will first be ANDed with
0xFFFFF or 0x7FFFF respectively, then offset in memory space according to IMMR to produce the
absolute flash address.

55

Bit map for the input parameter enabledBDM

BItbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Reserved Reserved Reserved Reserved Reserved Reserved Interrupt flag BDM flag

Note: If the BDM flag is set, the Interrupt flag will be ignored and external interrupts will be disabled.

3.10.5 Return Values
Type Description Possible Values

UINT32 Successful completion or error value. C3F_OK

C3F_ERROR_ALIGNMENT

C3F_ERROR_ARRAY_RANGE

C3F_ERROR_PARTID

3.10.6 Tips

The function is designed to only checksum flash memory. The input dest parameter is
forced to reside in flash memory range. Do NOT check blocks in cleared censor or
information censor modules. It may cause machine-check or check-stop exceptions.

If size = 0, the function returns C3F_OK and sum value = 0x00000000. The content of
sum is valid only when C3F_OK returned. This function is word, not byte oriented. It
operates on 4 bytes at a time.

When executing from flash memory, do NOT check the sum of the shadow row of the
module that the function is resident in. Switching to shadow row will temporarily hide
the main flash array.

3.10.7 Troubleshooting
Returned Error Bits Description Solution

C3F_ERROR _ARRAY_RANGE The area specified by
dest and size is out of
the valid C3F array
range.

1) Check if dest is out of C3F array range.
2) Check if dest+size is out of C3F array range.

Note the size of C3F array is 1M bytes or 512K
bytes depending on the given part.

C3F_ERROR _ALIGNMENT
This error indicates
that either the dest or
the size isn’t valid.

1)Check if the parameter dest is on the word (32-bit
or 4-byte) boundary, i.e. the dest is a multiple of 4.
2)Check if the parameter size is a multiple of 4.
3)Check if the parameter source is a multiple of 4.

C3F_ERROR _PARTID
Current flash driver
cannot support the
given part.

Check the part number.

56

3.10.8 Affected Register
Name Bit Description
IMMR PARTNUM Read
MSR EE Write

3.10.9 Revision String

An eleven-character ASCII text revision string is appended to the end of the C hex array
or S-record format of the CheckSum function executable. Use a hex viewer, or the ASCII
option in the debugger memory window dump once the CheckSum function has been
loaded, to view this revision string in the binary image. The CheckSum revision string is
formatted as follows:

PPCC3FCSxyz

where:

Item Use Description
PPC Platform Power PC CPU
C3F Flash Flash technology acronym
CS Driver Routine CheckSum acronym
x Major Revision 0 - 9
yz Minor Revision 00 - 99

57

����������
�����
�����������

A.1 Code Size
Real Size

(bytes)

FlashInit 420

FlashCheckShadow 360

FlashErase 560

BlankCheck 376

FlashProgram 620

FlashVerify 412

CheckSum 348

ChangeCensor 824

CallBack function 0

Total 3920

Notes:
1. The code size is determined using the Diab C/C++ 4.4a compiler.
2. The General Market C3F Driver follows EABI convention.

58

A.2 Stack Size
Real Size

(bytes)

FlashInit 24

FlashCheckShadow 32

FlashErase 48

BlankCheck 56

FlashProgram 80

FlashVerify 64

CheckSum 48

ChangeCensor 64

CallBack function N.A.

Notes:
1. The stack usage is determined using the Diab C/C++ 4.4a compiler.
2. The General Market C3F Driver follows EABI convention.

59

A.3 Program / Erase Times
MPC565 MPC563

Revision 0 Revision A Revision B Revision 0A

Program Time 2441 mS 2451 mS 2374 mS 1188 mS

Erase Time 1003 mS 15157 mS 1791 mS 1682 mS

Clear Censor Time (0xFF->0xFF) 1515 mS 14584 mS 2280 mS 2212 mS

Clear Censor Time (0x00->0xFF) 992 ms 14042 ms 1759 ms 1719 ms

Set Censor Time 112 uS 112 uS 112 uS 112 uS

Notes:

1. Program time is measured while programming all the blocks from 0xFF to 0x00, in sets of 128 words.
2. Erase time is measured while erasing all the blocks from 0x00 to 0xFF.
3. The time for the preprogramming step during an erase operation is less when the original data is all

zeros.
4. The clear censor operation erases all the blocks in a flash array. Clear censor time is measured for

two cases: (1) the original data in the array is all ones, and (2) the original data in the array is all
zeros.

5. The timer code uses the C-array General Market Driver.
6. Environment: temperature = 21.0 degrees, Vflash = 5.00V.
7. RCPU is in non-serialized mode, with no show cycles.

60

A.4 Callback Period
Each driver component has been tested to verify that the maximum callback period is no longer
than 100 µS at 40 MHz system clock speed.

Maximum Callback Period (uS)
Function Description MPC563 MPC565

FlashInit N/A 11 17
FlashErase All blocks 10 15
BlankCheck All blocks 92 94
FlashCheckShadow Module A shadow row 7 7
FlashProgram All blocks 11 11
FlashVerify All blocks 92 93
CheckSum All blocks 91 93
ChangeCensor Clear operation 14 14
ChangeCensor Set operation 12 12

Notes:
1. Callback period for FlashProgram is measured while programming all the blocks in sets of 128

words.
2. Callback period for FlashVerify is measured while verifying all the blocks in sets of 128 words.
3. The only timer code for measuring the CallBack period is in the CallBack function.
4. The timer code uses the C-array General Market Driver.
5. Environment: temperature = 21.0 degrees, Vflash = 5.00V.
6. RCPU is in non-serialized mode, with no show cycles.

